PowerPlay: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem
نویسنده
چکیده
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. Given a general problem-solving architecture, at any given time, the novel algorithmic framework PowerPlay (Schmidhuber, 2011) searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Newly invented tasks may require to achieve a wow-effect by making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. The greedy search of typical PowerPlay variants uses time-optimal program search to order candidate pairs of tasks and solver modifications by their conditional computational (time and space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. This biases the search toward pairs that can be described compactly and validated quickly. The computational costs of validating new tasks need not grow with task repertoire size. Standard problem solver architectures of personal computers or neural networks tend to generalize by solving numerous tasks outside the self-invented training set; PowerPlay's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Gödel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem-solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. PowerPlay may be viewed as a greedy but practical implementation of basic principles of creativity (Schmidhuber, 2006a, 2010). A first experimental analysis can be found in separate papers (Srivastava et al., 2012a,b, 2013).
منابع مشابه
First Experiments with PowerPlay
Like a scientist or a playing child, POWERPLAY (Schmidhuber, 2011) not only learns new skills to solve given problems, but also invents new interesting problems by itself. By design, it continually comes up with the fastest to find, initially novel, but eventually solvable tasks. It also continually simplifies or compresses or speeds up solutions to previous tasks. Here we describe first experi...
متن کاملOne Big Net For Everything
I apply recent work on"learning to think"(2015) and on PowerPlay (2011) to the incremental training of an increasingly general problem solver, continually learning to solve new tasks without forgetting previous skills. The problem solver is a single recurrent neural network (or similar general purpose computer) called ONE. ONE is unusual in the sense that it is trained in various ways, e.g., by...
متن کاملPreliminary Evaluation of Learning Performance of the Simplest Bovine Trans-rectal Palpation Phantom for Training Veterinary Students
Traditionally, animal exploitation in veterinary education in disciplines such as obstetrics is common worldwide. In addition, it is clear that veterinary schools are expected to provide sufficient opportunity for developing students’ necessary skill in bovine trans-rectal palpation by graduation. However, the veterinary medical education should be refined and animal exploitation in education b...
متن کاملAerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)
An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...
متن کاملA Real-Time Solver For Time-Optimal Control Of Omnidirectional Robots with Bounded Acceleration
We are interested in the problem of time-optimal control of omnidirectional robots with bounded acceleration (TOC-ORBA). While there exist approximate solutions for such robots, and exact solutions with unbounded acceleration, exact solvers to the TOC-ORBA problem have remained elusive until now. In this paper, we present a real-time solver for true time-optimal control of omnidirectional robot...
متن کامل